Library Context
This library defines the type context of infinite one-hole contexts
whose holes are at a finite depth.
Require Import Prelims.
Require Export Term.
Require Export TermEquality.
Require Import Equality.
Set Implicit Arguments.
Section Context.
Contexts are defined inductively over a signature F and a set of
variables X.
Variable F : signature.
Variable X : variables.
Notation term := (term F X).
Notation terms := (vector term).
One-hole contexts where a hole can occur at any finite depth.
Inductive context : Type :=
| Hole : context
| CFun : forall (f : F) (i j : nat),
i + S j = arity f -> terms i -> context -> terms j -> context.
Implicit Arguments CFun [i j].
| Hole : context
| CFun : forall (f : F) (i j : nat),
i + S j = arity f -> terms i -> context -> terms j -> context.
Implicit Arguments CFun [i j].
Depth of a hole.
Fixpoint hole_depth c : nat :=
match c with
| Hole => 0
| CFun _ _ _ _ _ c' _ => 1 + hole_depth c'
end.
match c with
| Hole => 0
| CFun _ _ _ _ _ c' _ => 1 + hole_depth c'
end.
Position of a hole.
Fixpoint hole_position c : position :=
match c with
| Hole => nil
| CFun _ i _ _ _ c' _ => i :: (hole_position c')
end.
match c with
| Hole => nil
| CFun _ i _ _ _ c' _ => i :: (hole_position c')
end.
Depth of a hole is depth of its position.
Lemma hole_position_depth :
forall c,
hole_depth c = position_depth (hole_position c).
Proof.
induction c; simpl; try (rewrite IHc); reflexivity.
Qed.
forall c,
hole_depth c = position_depth (hole_position c).
Proof.
induction c; simpl; try (rewrite IHc); reflexivity.
Qed.
Fill a hole in a context with a term.
Fixpoint fill (c : context) (t : term) : term :=
match c with
| Hole => t
| CFun f i j H v1 c' v2 => Fun f (vcast (vappend v1 (vcons (fill c' t) v2)) H)
end.
match c with
| Hole => t
| CFun f i j H v1 c' v2 => Fun f (vcast (vappend v1 (vcons (fill c' t) v2)) H)
end.
Filling a context gives terms equal up to the hole depth.
Lemma fill_eq_up_to :
forall (c : context) t u n,
n <= hole_depth c -> term_eq_up_to n (fill c t) (fill c u).
Proof.
intros c t u n.
revert c.
induction n as [| n IH]; simpl.
constructor.
destruct c; simpl; intro H.
inversion H.
constructor.
revert v e.
generalize (arity f).
induction i as [| i IHi]; simpl; intro a.
intros _ e k.
destruct k; repeat (rewrite vcast_vcons).
apply IH.
auto with arith.
apply term_eq_refl.
intros v e k.
destruct k; repeat (rewrite vcast_vcons).
apply term_eq_refl.
apply IHi.
Qed.
forall (c : context) t u n,
n <= hole_depth c -> term_eq_up_to n (fill c t) (fill c u).
Proof.
intros c t u n.
revert c.
induction n as [| n IH]; simpl.
constructor.
destruct c; simpl; intro H.
inversion H.
constructor.
revert v e.
generalize (arity f).
induction i as [| i IHi]; simpl; intro a.
intros _ e k.
destruct k; repeat (rewrite vcast_vcons).
apply IH.
auto with arith.
apply term_eq_refl.
intros v e k.
destruct k; repeat (rewrite vcast_vcons).
apply term_eq_refl.
apply IHi.
Qed.
Filling a context with bisimilar terms yields bisimilar terms.
Lemma fill_term_bis :
forall (c : context) t u,
t [~] u ->
fill c t [~] fill c u.
Proof.
intros c t u H.
induction c as [| f i j H1 v1 c IH v2]; simpl.
assumption.
constructor.
intro k.
destruct H1.
simpl.
induction i as [| i IHi].
simpl in k.
simpl.
dependent destruction k.
simpl.
assumption.
apply term_bis_refl.
dependent destruction k.
apply term_bis_refl.
specialize IHi with (vtail v1) k.
simpl.
assumption.
Qed.
Require Import Arith.
Lemma lt_plus_minus_r : forall n m, n < m -> n + S (m - S n) = m.
intros.
rewrite <- plus_Snm_nSm.
apply le_plus_minus_r.
assumption.
Qed.
Require Import Lt.
Require Import Bool_nat.
forall (c : context) t u,
t [~] u ->
fill c t [~] fill c u.
Proof.
intros c t u H.
induction c as [| f i j H1 v1 c IH v2]; simpl.
assumption.
constructor.
intro k.
destruct H1.
simpl.
induction i as [| i IHi].
simpl in k.
simpl.
dependent destruction k.
simpl.
assumption.
apply term_bis_refl.
dependent destruction k.
apply term_bis_refl.
specialize IHi with (vtail v1) k.
simpl.
assumption.
Qed.
Require Import Arith.
Lemma lt_plus_minus_r : forall n m, n < m -> n + S (m - S n) = m.
intros.
rewrite <- plus_Snm_nSm.
apply le_plus_minus_r.
assumption.
Qed.
Require Import Lt.
Require Import Bool_nat.
Create a context from a term by making a hole.
Fixpoint dig (t : term) (p : position) {struct p} : option context :=
match p with
| nil => Some Hole
| n :: p => match t with
| Var _ => None
| Fun f args => match lt_ge_dec n (arity f) with
| left h => match dig (vnth h args) p with
| None => None
| Some c => Some (CFun f (lt_plus_minus_r h)
(vtake (lt_le_weak n (arity f) h) args)
c
(vdrop h args))
end
| right _ => None
end
end
end.
match p with
| nil => Some Hole
| n :: p => match t with
| Var _ => None
| Fun f args => match lt_ge_dec n (arity f) with
| left h => match dig (vnth h args) p with
| None => None
| Some c => Some (CFun f (lt_plus_minus_r h)
(vtake (lt_le_weak n (arity f) h) args)
c
(vdrop h args))
end
| right _ => None
end
end
end.
Digging a hole and filling it with the same gets you nothing new.
Lemma dig_fill :
forall t p,
match dig t p, subterm t p with
| Some c, Some s => fill c s [=] t
| _, _ => True
end.
Proof.
intros t p.
induction p as [| n p IH]; simpl.
apply term_eq_refl.
By the way, CoLoR states it like this:
Lemma subterm_elim : forall p t s, subterm t p = Some s ->
{c | dig s p = Some c /\ s [=] fill c s}.
Lemma dig_fill :
forall t p,
match dig t p, subterm t p with
| Some c, Some s => fill c s [=] t
| _, _ => True
end.
Proof.
intros t p.
induction p as [| n p IH]; simpl.
apply term_eq_refl.
By the way, CoLoR states it like this:
Lemma subterm_elim : forall p t s, subterm t p = Some s ->
{c | dig s p = Some c /\ s [=] fill c s}.