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ABSTRACT

This thesis describes our formalisation of the basic notions from the theory of
infinitary term rewriting in the CoqQ proof assistant. Infinitary term rewriting
is a generalisation of term rewriting where we allow terms to be infinitely deep
and admit rewrite sequences of transfinite length. Coq is an interactive proof
assistant based on constructive type theory with inductive types. The main con-
tribution of our formalisation is an inductive definition of transfinite rewrite

sequences, based on tree ordinals.

The ordinal numbers are represented by tree ordinals, following the construc-
tion of an order on tree ordinals by Hancock (2008). Infinite terms are defined
by coinduction. A novel representation for rewrite sequences of ordinal length
is defined, based on the inductive structure of the tree ordinals. The order on
ordinals is then lifted to an embedding relation on rewrite sequences. We dis-
cuss an application of our formalisation in the verification of a counterexample
to unique normal forms in weakly orthogonal infinitary TRSs, introduced by
Endrullis, Grabmayer, Hendriks, Klop, and van Oostrom (2010).
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CHAPTER 1

Introduction

This thesis describes a formalisation of the theory of infinitary term rewriting
in the Coq proof assistant. The foundation of Coq is a constructive type theory
with inductive types, whereas infinitary term rewriting, building on the theory
of finitary rewriting, uses notions from topology, set theory, and analysis, but

not necessarily in a constructive way.

The central question we aim to answer in this thesis is whether the traditional
notions from infinitary term rewriting can be translated to Coq in such a way
that the resulting definitions are natural for the Coq system. Of course, for such
a translation to be satisfactory, it should preserve the semantics of the original
notions.

In the remainder we may simply write ‘rewriting’ instead of ‘infinitary rewrit-

ing’ and ‘term’ instead of ‘infinite term’.

Although this text contains a fair amount of Coq code, it is not our intention
to completely list a development ready for compiling. Rather, the included
code fragments are thought to be the most interesting ones for the purpose of
discussion of our development. In fact, many of the code listings are sim-
plified and/or typographically enhanced to a form beyond of what the Coq
compiler will accept. Furthermore, lemmas are stated without proof. The
reader is invited to study the full source code, with proofs, which is available at

http://martijn.vermaat.name/master-project/.


http://martijn.vermaat.name/master-project/

Infinitary Rewriting

The theory of (finitary) rewriting is concerned with the repeated transformation
of objects by discrete steps following a predefined set of rules. Such a set of
rules can be understood as implementing a programming language if we take
programs as the objects to be transformed. Indeed, term rewriting is the foun-
dational model of functional programming. Other examples of rewriting can be
found in the transformation of braids (Melli¢s, 1995) and the A-calculus. As a
matter of fact, A-calculus is of prime importance, both as a model of computa-

tion and as a logical framework.

Infinitary rewriting generalises finitary rewriting by considering infinitely large
objects and series of transfinitely many transformation steps. One could ques-
tion the validity of this generalisation, especially in the context of mechanical
formalisation with which this thesis is concerned. After all, the word ‘mechan-

ical’ implies finite restrictions on the amounts of space and time we can use.

However, mathematicians (and computer scientists for that matter) have long
had ample reason to include the infinite in their work. In The Quadrature of the

Parabola, Archimedes considers the infinite summation

1 1 1

in his proof that the area of a parabolic segment is %5 that of a certain inscribed
triangle. Of course we cannot carry out the infinite computation to arrive at the
outcome %, but we can represent it in finite space and manipulate this represen-

tation in finite time to deduce its outcome.

As another example to motivate the study of infinite objects, consider the simple

HASKELL program
fO where fn=n:f(n+1)

that defines the infinite stream of natural numbers. We can inspect the stream at
any position, but by HaskeLL’s lazy evaluation the stream is never fully com-
puted. Again, the represented object takes an infinite amount of space to store
and an infinite amount of time to compute, yet we can perfectly reason about it

in finite space and time.

The theory of infinitary term rewriting is formally introduced in Chapter 2. In
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that chapter, we define precisely which infinite objects are allowed and what we

understand by transfinite sequences of rewrite steps.

Mechanical Formalisation

The translation of infinitary rewriting to Coq is an example of the mechanical
formalisation of a mathematical theory. By ‘mechanical’ we mean that the for-
malisation must be in a form that can be manipulated by a machine. Definitions
on paper or ideas in one’s head do not qualify as mechanical formalisations.

Furthermore, we want the formalisation to represent the theory’s semantics.
The promises of mechanical formalisations include:

Confidence Proof-checkers can verify the correctness of proofs in a rigorous
way. If we trust the implementation of the checker (which is usually kept
as small as possible) and its execution on a computer, we can be confident
that a verified proof is correct, even if we do not fully comprehend it.

Automation Tedious work, whether computationally hard or just boring, is
often better suited to computers. They are faster than humans and precise.

Intuition  Proofs on paper typically abstract away from seemingly uninterest-
ing details. This is often a good thing, but sometimes the level of detail of
a mechanical proof gives us that extra bit of insight to fully understand its
workings. Another way of gaining intuition is by building tools on top of
the formalisation, e.g. providing graphical representations of definitions.

Availability Formalised theories may be searched and browsed semantically
using a computer instead of just syntactically. Furthermore, the internet
provides us with excellent methods to share and copy these formalisations
globally.

In 1976, the four colour theorem' was proven (Appel and Haken, 1976). The
proof used a computer program to show that a particular set of 1,936 maps
satisfy a certain property by exhaustive case analysis. This is an example of
automation by translation to a computer. The correctness of the proof, however,
remained debatable because this case analysis by computer was impossible to

perform or verify by hand.

!“Four colours suffice to colour any map such that no two neighbouring countries have the same
colour.” Posed by Francis Guthrie in 1852.

Mechanical Formalisation 3



Even though a simpler proof was published by Robertson, Sanders, Seymour,
and Thomas (1997), it was not until Gonthier (2005) formally verified the entire
proof, including the computer program part, that all remaining doubts were
dispelled. This formalisation thus helped gain confidence in the validity of the

theorem.

Large-scale mechanical formalisation of mathematics goes back to the 1960’s
with de Bruijn’s AutomaTh project (Nederpelt, Geuvers, and de Vrijer, 1994).
A complete text book on analysis (Landau, 1965) was formalised and verified

for correctness, but the system never gained widespread use.

Many formalisation efforts, using many different systems, have since been un-
dertaken. A list of formally verified proofs for 100 mathematical theorems is
maintained by Wiedijk (2008). Ongoing work is the FLysPEck project (Hales,
Harrison, McLaughlin, Nipkow, Obua, and Zumkeller, 2009) with as goal a
formal proof of the Kepler conjecture,' expected to take up to 20 work-years to
complete.

Outline

In Chapter 2 we introduce ordinal numbers and the theory of infinitary term
rewriting. This is mostly a recapitulation of Terese (2003), included for self-

containment, and can be seen as preliminaries for the later chapters.

The purpose of Chapter 3 is to present our formalisation of infinitary term
rewriting in the CoqQ proof assistant. We start with a short introduction to CoqQ

and then review the main parts of our development.

Our formalisation was used to prove that in infinitary rewriting, weak orthogo-
nality does not imply uniqueness of normal forms. This application is discussed
in Chapter 4.

Finally, in Chapter 5 we discuss our results and draw conclusions.

We include a short introduction to Coq in Appendix A.

1“The most efficient packing of oranges is in a pyramid.’” Posed by Johannes Kepler in 1611.
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CHAPTER 2

Infinitary Term Rewriting

Before formally introducing term rewriting, we give an example of an infinitary
TRS taken from Klop and de Vrijer (2005) and trust the reader to pick up the

general ideas.

Let A, B, and P be symbols with arities 0, 1, and 2, respectively. We consider

the system consisting of the following rule:
A — B(A)

The term A rewrites to B(B(B(A))), written B3(A), in 3 steps, or more generally
to B"(A) in n steps for every n € N.

=
»——®

B
b
;
i

In the finitary setting, these are the only rewrite sequences from A and all of

them allow an additional step. Hence, A has no normal form.

The limit of these rewrite sequences, although non-existent in finitary rewriting,
is intuitively well-defined. It is reached in w many rewrite steps and we denote
it by B“. Infinitary rewriting allows (i) infinite terms such as B and (ii) rewrite

sequences of transfinite length such as A —“ B“.



S
B—tw—®
C—m—

The word ‘transfinite’ hints that there are also rewrite sequences of length > w.
Consider for example the term P(A, A). We can rewrite this term to P(B“, A)
in w many steps, and rewrite P(B“, A) to P(B“, B“) in another w many steps.

Therefore we have P(A, A) —»“*% P(B“, B¥).

P P P P P P P
/N TN TN T /N TN TN T /\
A A B A B A B A B B B B B B
\ \ | \ |
A B B B A B B B B
\ \ \ | |
A B B B A B B
\ \ \ |

However, P(B“, B“) can also be reached from P(A, A) in w many steps, alter-

nating the steps from the two w-step rewrite sequences.

P, P _, P _, P _ P o P
/\ / \ /\ / \ / \ / \
A A B A B B B B B B B B
\ | |

A A A B A B B B B

\ | |

A A A B B

\ \

This observation is generalised in the Compression Lemma (page 16).

In the following sections, we introduce the ordinal numbers and a representation
for them known as tree ordinals, and we present the basic notions from the

theory of term rewriting as required in the following chapters.

2.1 Ordinal Numbers

Ordinal numbers (Cantor, 1915), or ordinals for short, are an extension of the

natural numbers with transfinite objects. Indeed, the finite ordinals are just the
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natural numbers. The smallest infinite ordinal is called w and following w we
have w+ 1, w+ 2, ..., w X 2. Then there are the ordinals w X2+ 1, w X 2 + 2,

..., w X 3. Some other (still relatively small) ordinals are:

Note that this is all merely notation, we have not yet defined a representation

for ordinals or what +, X, and superscripts are.

In set theory, ordinals are usually represented by hereditarily transitive sets.
Zero corresponds to the empty set &, one to the singleton {&} and so on, and w
is represented by {&, {@}, {2, {T}}, .. .}. Now € constitutes a well-founded total

order on the ordinals.

We abbreviate a U {a} by @' and say that « is a successor ordinal if a = * for
some ordinal 8. If « is not a successor ordinal and @ # &, it is called a limit
ordinal. Hence, an ordinal can be either zero, a successor ordinal, or a limit

ordinal.

Examples of successor ordinals are 4, w + 7, and w2+ 1. Examples of limit
ordinals are w and w X 3. Henceforth we use «, 3, y, A to denote ordinals where

A always denotes a limit ordinal.

One can do arithmetic on ordinals much like we do arithmetics on natural num-

bers. For example, addition can be defined by recursion on the right argument:

a+0=a
a+p =(@+p)"
a+/l=U{a+y|7€/l}

2.1.1 Tree Ordinals

The tree ordinals (Dennis-Jones and Wainer, 1984) are a representation of the
countable ordinals as countably branching well-founded trees. Their inductive

definition uses constructors 0 (zero), * (successor), and L (limit).

DerinITION 1. The set of tree ordinals 7O is defined by induction:

2.1 Ordinal Numbers 7



FiGureE 2.1. A representation of w X 2 + 2. Branching points, filled dots, and open dots
denote L, *, and O constructors, respectively.

. 0€70.
1. If @ € 70, then a* € 70.
n. If @; € 70 for all i € N, then L;; € 7O. *

The U constructor has type (N — 70O) — 70O. For our convenience we write
L;---i--- instead of L(Ai.---i---). Sometimes we explicitly enumerate the

argument, writing for example U(ay, @z, as, .. .).

Now zero is represented by 0, a successor ordinal « + 1 is represented by a*,
and a limit ordinal A is represented by Lj;e; if A is the least upper bound of
the sequence ay, s, @s,.... As an example of a tree ordinal representation,

Figure 2.1 visualises w X 2 + 2 as a tree ordinal.

Some ordinals have no unique representation as tree ordinal. Consider for ex-
ample the limit ordinals Li;i + 3 and Li;i X 2. Both are representations of w and

a meaningful order relation would have to position them at the same rank.

A more intricate issue is what to make of ordinals such as LI(3, 3, 3, .. .). In spirit

of the intuition given above it represents 3, that being the non-strict least upper

8 CHAPTER 2 [Infinitary Term Rewriting



bound of 3, 3,3, ...." We might like to exclude such representations and require
that Ll;; always represents a limit ordinal. This can be done by imposing a
strict monotonicity condition on the limit sequences. Some order relation on

tree ordinals is needed for that.

The following construction (Definitions 2 through 4) is due to Hancock (2008).
In preparation for an extensional order relation on 7O, we define a structural

strict order relation.

DerintTION 2. The set-valued function ® defines the predecessor indices ®(a)

for a by recursion on a:

$(0) = @
P(a™) =1+ d(a)
<I>(|_I,»a,») = (Zn (S N) <I>(a',,) *

By I + A we mean the disjoint sum of the unit type 1 and A, where we use
LEFT and RIGHT a (for a € A) as constructors of 1 + A. The X-type (Xa € A)B,
consists of the pairs (a, b) such that a € A and b € B,. Note that the set $(0) of

predecessor indices for 0 has no inhabitants.

The predecessor indices of an ordinal @ are essentially the paths on its tree

structure starting from the root that cross at least one * constructor.

DeriniTioN 3. The function _[_] : ([T : TO) ®(a) — TO defines the prede-

cessor a[t] of @ indexed by t recursively on a:

a*[LEFT] = @
a [RIGHT (] = a[i]

Ua;[{n, 0] = a,ld] *

This structural predecessor function can be seen as defining a ‘subtree’ partial
order on 70O. With it we are ready to define an extensional non-strict order
relation on 7O that classifies ordinals by rank.

DEerINITION 4. We define the order < as a binary relation on 7O by induction:

10, if we take the strict least upper bound, LI(3, 3,3, ...) represents 4.

2.1 Ordinal Numbers 9



1. 0 < B for every ordinal 8 € 70O.

. Forall @,8 € 7O and ¢ € ®(B), if @ < B[] then a* < .

mr. For all ag, @1, az,...,8 €70, ifa, <Bforalln €N, then L;a; < B. =
An extensional equality on 70 can now be defined on top of this order.
DEFINITION 5. @, € TO are equal, written @ ~ B3, if « < B and 8 < «. *
The following proposition states that this equality implements our requirement
of identifying LI;i + 3 and Li;i X 2.
ProposITION 1. LJ;i + 3 =~ L;i X 2.

Proor. Trivial. 0

We extend the non-strict order on 7O to a strict order.

DEFINITION 6. @, € 7O are in strict order, written @ < 8, if @ < B[¢] for some
L€ P(B). *
Now that the tree ordinals are equiped with a strict order, we can express the

aforementioned monotonicity condition on the arguments of LI constructors.

DEerinITION 7. We say that an ordinal is well-formed if it satisfies the wf prop-

erty, defined by induction:

L wf 0.
. For every a € 70, if wfa then wfa*.
ur. For all ag, a1, az,... € 70, if for all n,m € N we have wfa, and that
n < m implies @, < @, then wf L; ;. *

The tree ordinal L;(3, 3, 3, ...) is, obviously, not well-formed.

2.2 Term Rewriting
We give a short introduction to the basic notions of infinitary term rewriting as
required in the following chapters. For a more in-depth treatment of the the-

ory of term rewriting, consult Terese (2003). Discussion of infinitary rewriting

10 CHAPTER 2 [Infinitary Term Rewriting



specifically can be found in Terese (2003, Chapter 12) and Klop and de Vrijer
(2005). In this section, we try to conform to definitions and notations from
Terese (2003), but sometimes choose to follow more closely our Coq formali-

sation discussed in Chapter 3 when the two diverge.

Note that we routinely denote infinite terms by just ‘terms’ and infinitary rewrit-
ing by just ‘rewriting’. We understand a ‘sequence’ to mean a finite or infinite
list of objects and always explicitely write ‘rewrite sequence’ if this is what we

mean to say.

2.2.1 Definition of a TRS

DEerINITION 8. A signature ¥ is a non-empty set of function symbols f, g, .. ..
Each function symbol f has a fixed natural number §f, which we call its arity.

A function symbol with arity O is also called a constant. 3

DEerINITION 9. The set of (possibly infinite) terms Tery(X) over a signature X

and a set of variables X = {x,y, ...} is defined by coinduction:

1. x € Ter?(X) for every variable x € X.
n. Forevery f € X,if t1,...,t5 € Tery(X), then f(21,...,t5) € Tery$(X).*

The symbol f is called the root of f(¢,...,t,) and the terms #; are called the
arguments of f. By Var(t) we denote the set of variables occurring in ¢, and
t is closed if Var(t) = &. If no variable occurs more than once in #, we say ¢
is linear. Often, the set of variables X is left implicit and Ter{T(X) is denoted
simply by Tery. By the set of finite terms Tery we mean the subset of well-

founded terms of Tery.

Preparing for the mechanised setting of Section 3 with its constrains of finite
memory and computing time, we want to be precise about the notions of equal-
ity on infinite objects we employ. We consider terms to be equal if they are
(i) bisimilar or (ii) pointwise equal up to every depth. According to Proposi-

tion 2 it does not matter which equality we use.

DEeFINITION 10. We define the bisimilarity relation < on Tery by coinduction:

1. x & x for every variable x € X.
n. Forevery feX,if s;211,..., 580 2 typ, then f(s1,...880) 2 f(t1,...,t5p).

2.2 Term Rewriting 11



We say that s and ¢ are bisimilar if s © t. s

DEerINITION 11. (Pointwise) equality of terms s and ¢ up to depth d, written

S =<4 t, is defined by induction:

L. § =co t for every s,t € Tery.
Im. x =<4 xforeveryd e Nand x € X.
ur. Forevery f € X,if sy =<4 t1,...,84f =<a tys, then f(s1,...84¢) =<1

fQ, . typ).

Terms s, t are pointwise equal, written s = t, if s =4 ¢ for every depth d. *
PROPOSITION 2. s &t © s=t.

Proor. By induction on the depth of pointwise equality (=) and by coinduction
on € (&). O

DEFINITION 12. A rewrite rule p over a signature X is a pair (/, r) of finite terms
in Tery (written p : [ — r). We only consider rewrite rules where [ is not a
variable and Var(r) C Var(l). *

The two restrictions on rewrite rules are standard and prevent our theory from
misbehaving in some particular ways. We say a rewrite rule is left-linear if its

left-hand side is linear.

DEFINITION 13. A ferm rewriting system (TRS) R is a pair (¥, R) of a signature

Y and a finite set of rewrite rules R over X. *

2.2.2 Rewriting

Positions are sequences of natural numbers. The empty sequence is denoted by
€ and ip is the prefixing of a sequence p with the number i.

DEerINITION 14. The set of positions Pos(t) of a term t is inductively defined by:

L. € € Pos(t) for every t € Tery.

1. Forevery feXand1 <i < Hf,if p € Pos(r;) thenip € Pos(f(1y,..., ty£)).
The subterm of term ¢ at position p, written ¢, is inductively defined by (i) #c =
t and (ii) f(t1,...,t)lip = tilp. Similarly, updating a term ¢ at position p with
term s, written #[s],, is defined by replacing the subterm ¢|, at position p in ¢

with s. *

12 CHAPTER 2 Infinitary Term Rewriting



In contrast to Terese (2003), we do not define contexts as terms over an extended
signature. Instead, a direct inductive definition of one-hole contexts is given, in
line with our Coq development. See also Subsection 5.3.4.

DEeFiNiTION 15. The set of (one-hole) contexts Ctxy> over a signature X is de-

fined by induction:

L e Cuy.
. Forevery f € Xand 1 < i < fif, ift1,....ti 1, i1, tyy € Tery and
C e Cixy, then f(ty,..., 4.1, C, tiy1, ..., tyr) € Crxy. *

Thus every context C has exactly one occurrence of the symbol [, called its
hole. By the term C[t] we mean the result of replacing the hole of C by .
We allow a slight abuse of notation by writing #[(]], for the context C with
C[t],] = t. We also assume obvious extensions to contexts for notions on terms
(e.g. bisimilarity and Var(C) and $os(C) for C € Ctxy’). The depth of a context
C is defined by the length of the (unique) position p with C|, = [J.

DEeriniTION 16. Given a signature ¥ and a set of variables X, a substitution
o is a mapping from X to Tery (X). It can be generalised to a mapping & :

Tery(X) — Tery (X) corecursively:

ax) =o0((x)

a(ftr, ... ) = f(O(11),..., T (1n)) *

Since ¢ is completely defined by o we refer to both as ‘the’ substitution o.
Applying a substitution o to a term ¢ is usually written ¢ and the result is

called an instance of t.

If we view a rewriting rule p : [ — r as a scheme, an instance of p can be
obtained by applying a substitution o. The result is the atomic rewrite step
17 —, r7. We call I a (p-) redex and r” its contractum. An atomic rewrite

step can be placed in a context, forming a rewrite step.

DEFINITION 17. A rewrite step C[I7] —, C[r”] according to the rewrite rule p
consists of rewriting the redex obtained from p and substitution o to its con-

tractum in a context C. *

The depth of a rewrite step is the depth of its context. We call —, the one-step

rewriting relation generated by p. The one-step rewriting relation — of a TRS

2.2 Term Rewriting 13



R with rewrite rules R is defined as the union of {—, | p € R}.

Related to equality of (infinite) terms is equality of rewrite steps. Since rewrite
steps contain possibly infinite contexts, it makes sense to define equality of
rewrite steps via equality of their contexts. This is made precise in the following

definition and the resulting equality is used in Subsection 3.3.1.

DerintTION 18. Two rewrite steps are defined to be equal if

1. they use the same rewrite rule p,
1. their contexts are bisimilar, and

1. their substitutions agree on all variables in p. *

DEeFINTTION 19. A rewrite sequence of ordinal length « is a sequence of rewrite

steps (13 — 15+ )g<a- ®

This definition only makes sense if we somehow require that for every limit
ordinal 4 < «, the terms (#z)g<, approach ¢, in the limit and usually an even
further restrictions is desirable. We define the notion of Cauchy convergence

and, using that, four conditions on rewrite sequences.

DEeFINITION 20. Let A be a limit ordinal. A sequence of terms (#3)g<1 (Cauchy-)
converges to the term t if for every depth d there exists @ < A such that for all

aXf<Awehavetg =<yt *

DEFINITION 21. A rewrite sequence (fz — g+ )g<q Of length « is

1. weakly continuous if for every limit ordinal A < «, the sequence (#g)s<a
converges to the term z,,
1. strongly continuous if it is weakly continuous and for every limit ordinal
A < a, the depth of the rewrite steps (13 — 13+)<4 tends to infinity,
u1. weakly convergent if for every limit ordinal 4 < «, the sequence (13)<,
converges to the term #,, and
1v. strongly convergent if it is weakly convergent and for every limit ordinal

A £ a, the depth of the rewrite steps (13 — 13+)<,4 tends to infinity. *
We write 7 —» t, if there exists a strongly convergent rewrite sequence (g —
Ig+)p<a OF o =% 1, if we want to stress its length. The convertibility relation is

defined as the equivalence closure of —.
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2.2.3 Normal Forms and Orthogonality

DeriniTION 22. Let R be a TRS.

I. Atermt is a normal form if there is no rewrite step from t. We say ¢ is a
normal form of s if s — t and ¢ is a normal form.
1. R has the property of unique normal forms (UN®) if t = u for every two
convertible normal forms ¢ and u.
. R has the property of unique normal forms with respect to rewriting
(UN7) if for all terms s, we have ¢+ = u for all normal forms ¢ and u

of s. *

Obviously we have that UN® implies UN™. One source of non-unique normal
forms is the interference of two redex occurrences in a term. Contracting one of
them may result in a term where (a descendant of) the other redex is no longer
present, possibly losing confluence. This phenomenon is made precise in the

following definition.

DEerinITION 23. We say two rewrite rules py : [y — r; and p; : I — 7, have
overlap if there exists a non-variable position p € %os(l;) such that /{|, and
I, have a common instance. (We exclude the trivial case of overlap between a
rewrite rule and itself at the root position.) Let o, 7 be substitutions such that
L] p(’ = 1,7 is a most general common instance of /;|, and />, and without loss of
generality assume that dom(o) = Var(l,|,) and Var(lllp”) N Var([0],) = @.
Then ([,7[r,"]p, 1,7} is called a critical pair of p; with p;. A critical pair (s, t)

is called trivial if s = ¢. *

Critical pairs are unique up to renaming of variables. Using these notions we

can define some useful classes of term rewriting systems.

DEeriNITION 24. A TRS is called

1. left-linear if all its rewrite rules are left-linear,
1. orthogonal if it is left-linear and there are no critical pairs, and

1. weakly orthogonal if it is left-linear and all critical pairs are trivial. =

A fundamental result in the theory of infinitary rewriting is the Compression
Lemma.

2.2 Term Rewriting 15



LemmMma 1 (Compression). Every strongly convergent rewrite sequence in a left-

linear TRS can be compressed to length less than or equal to w.

Proor. By transfinite induction on the length of the rewrite sequence. See for
example Terese (2003, Theorem 12.7.1, page 689) or Endrullis et al. (2010).0]

Orthogonal rewrite systems enjoy the UN™ property (Kennaway, Klop, Sleep,
and de Vries, 1995; Klop and de Vrijer, 2005). In Chapter 4 we formalise
the counterexample to UN® for weakly orthogonal TRSs from Endrullis et al.
(2010).
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CHAPTER 3

A Mechanical Formalisation

In this chapter we present a formalisation of some of the notions from Chapter 2
in the Coq proof assistant. Section 3.1 translates the tree ordinals from Subsec-
tion 2.1.1 to Coq. Coinductive terms are defined in Section 3.2. In Section 3.3
we present a novel representation of transfinite rewrite sequences based on the
structure of the tree ordinals. This we regard as the main contribution of this

thesis.

A short introduction to Coq is included in Appendix A. In the Coq code frag-
ments, we take some notational liberties in favour of readability. Sometimes we
omit (part of) the type information. We also freely use infix notations without

declaration. Furthermore, variable and definition names are typeset liberally.

Some definitions have implicit arguments, meaning those arguments can be in-
ferred by the system from the context. As an example, consider the inductive
type nat* whose constructor takes as arguments a natural number »n and a proof
that n is greater than 0.
Inductive nat* : Set :=
| Pos: ¥ n:nat,0<n— nat.

The argument n of Pos can be implicit, since it can be inferred from (the type
of) the other argument. If H has type 0 < 3, we can write Pos H instead of Pos
3H.

Related work are the CoLoR (Blanqui and Koprowski, 2010) and COCCINELLE

(Contejean, Courtieu, Forest, Pons, and Urbain, 2007) projects, libraries on


http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#nat

finitary rewriting and termination, and the representation of ordinal numbers

up to € and Iy in Cantor and Veblen normal form by Castéran (2006).

3.1 Ordinal Numbers

In the theory of infinitary rewriting, the lengths of rewrite sequences play a cen-
tral role. One might even suspect that any representation of transfinite rewrite

sequences needs a representation of ordinal numbers. But this is not the case.

Consider as an illustration the example of finite lists. They can be naturally
represented inductively, without the need for a representation of natural num-
bers. The usual inductive definition of lists, using constructors Nil and Cons,
can be seen as a generalisation of the natural numbers, defined inductively us-
ing constructors Zero and Successor. The generalisation consists of labeling

the Cons constructors with list members.

Likewise, we now turn to the definition of tree ordinals as a case study in prepa-

ration for the definition of transfinite rewrite sequences in Section 3.3.

We define the ordinal numbers using the representation of tree ordinals (cf. Def-

inition 1) in Coq by ord.

Inductive ord: Set :=
| Zero : ord
| Succ : ord — ord
| Limit : (nat — ord) — ord.

Arithmetic operations on ordinals, such as addition, are easily defined.

Fixpoint + (e S : ord) : ord :=
match S with
| Zero = «
| Succ B = Succ (a + B)
| Limit f = Limit (funn = a + (f n))
end.

In fact, all definitions from Subsection 2.1.1 translate directly to Coq code. We
can now prove basic properties of <, for example that it is transitive and that, for

the finite ordinals, it coincides with the standard order on the natural numbers.!

! Although n and m have type nat and < has type ord — ord — Prop, we can state the lemma in
this concise way by defining the trivial coercion from nat to ord.
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Lemma <gups : V@ By, a B>y —>a=y.

Lemma <, :VYnunm,n<men<m.

Recalling our discussion in Subsection 2.1.1 of limit ordinals whose sequences
do not actually approximate to a limit ordinal, we consider the lemma <;ero_right

as an example of this issue.
Lemma <yero_right : ¥ @ B, @ < Zero — a <.

We would like to strengthen this, but cannot, since nothing denies @ from being
the tree ordinal LI(0, 0, 0, . ..) (which has the same rank as 0). We therefore turn
to a subset of the tree ordinals where we restrict limit sequences to be strictly
monotonic. This restriction is encoded in the wf (well-formedness) property.

The X-type ord" defines the resulting subset.

Fixpoint wf a : Prop :=
match a with
| Zero = True
| Succ g = wf B
[Limitf =V wf(fn)AVYmn<m—->fn<fm
end.

Definition ord" : Set :={ a: ord | wf @ }.
Now we can prove the stronger result we were looking for.!

Lemma <™ . :Va:ord™, a < Zero - « = Zero.

3.2 Coinductive Terms

We define the type term of infinite terms with function symbols in F and vari-
ables in X.

CoInductive term: Type :=
| Var: X — term
| Fun: Vf: F, vector term (arity f) — term.

The objects of a coinductive type can only be built in some restricted way to
ensure productivity of their construction. This restriction implies a technical

difficulty in the definition of the vector type, which is discussed in Section A.4.

! Again, defining a simple coercion from ord“" to ord (first Z-type projection) lets us state this
lemma concisely.
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For now, we assume vector to implement dependently typed lists (the type de-

pending on their length).

The standard equality defined in Coq, equivalent to Leibniz’ equality and writ-
ten =, does not suffice for establishing that two terms are equal, given that the
only way to build infinite objects is by corecursion. Because the amount of
memory available is finite, we can only unfold the corecursive definition finitely
many times, and then still be left with a non-normal form. Simply comparing
such definitions will not do, since the corecursive construction of any given in-
finite object is not unique. To this end, we define two extensional equalities on
term, following Definitions 10 and 11. The coinductive relation < defines
bisimilarity and pointwise equality is defined by = inductively.
CoInductive € :term — term — Prop :=
| ©var 1 ¥V x,Varx € Varx
| Crin :Vfvw,(Vi,vi € wi)>Funfv € Funfw.
Any proof of two infinite terms being bisimilar is an infinite proof, in the sense
that the proof term is built by corecursion.
Inductive =< : nat — term — term — Prop :=
|[teuty: Vst,s=<ot

| teutyar @ ¥V d x, Var x =<4 Var x
[teutpun : Ydfvw, Vi, vi=scawi) > Funfv=cgy Funf w.

Definitions=t7r:=VYd,s=c4t.

We can prove that < and = are the same relation, and that indeed it is an

equivalence.

Lemma term_bis_term_eq: Vst,s € t e s=t.
Lemma € : V1,1 € t.
Lemma Cgymm Vst s @ t—>1 2 .

Lemma Qs : VSstu,s S t—-t L u—s & u

In Section 3.3 we need some notion of convergence for functions of type nat —

term. We implement Definition 20 in Coq for sequences of length w.

Definition converges (f : nat — term) (¢ : term) : Prop :=
Vd,An,Ym,n<m—->fm=,t.

The definitions of finite term, rewrite rule, TRS, and left-linearity from Subsec-
tion 2.2.1 translate to Coq directly. We define lhs and rhs to be first and second
projection on rewrite rules, respectively.
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The type of contexts is inductively defined, where the hole always occurs at a
finite depth.

Inductive context: Type :=
| OO0 : context
|[CFun: VY (f: F)(ij:nat),i+Sj=arity f —
vector term i — context — vector term j — context.

Applying a substitution o to a term ¢ is defined by corecursion over . We also

use the notation 77 for substitute o ¢.

Definition substitution := X — term.

CoFixpoint substitute (o : substitution) (¢ : term) : term :=
matchrwith
|Varx = o x
| Fun f args = Fun f (vmap (substitute o) args)
end.

We apply the recursive function fill (not shown here) to a context C and a term
t (written C[¢]) to replace the hole in C with 7.

Positions are represented by simple lists of natural numbers. This means the
subterm at some position in some term may not actually exist. For this reason
we employ option types in functions that do a lookup by position (functions in

Coq are always fotal). For further discussion of positions, see Section 5.3.

Fixpoint dig (¢ : term) (p : position) {struct p} : option context :=
match pwith
| nil = Some O
|n:: p=matchtwith
| Var _ = None
| Fun f args = match It_ge_dec n (arity ) with
| left h = match dig (vnth i args) p with
| None = None
| Some C = Some (CFun f (It_plus_minus_r /)
(vtake (It_le_weak n (arity f) h) args)
C
(vdrop h args))
end
| right - = None
end
end
end.
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Fixpoint subterm (¢ : term) (p : position) {struct p} : option term :=
match p with
| nil = Some ¢
|n: p=>matchtwith
| Var - = None
| Fun f args = match lt_ge_dec n (arity /) with
| left h = subterm (vnth & args) p
| right —~ = None
end
end
end.

Now subterm ¢ p gives the subterm of ¢ (if it exists) and dig 7 p gives the context
C (if it exists) that is # with subterm ¢ p replaced by [J at position p.

3.3 Transfinite Rewrite Sequences

In this section we present the essence of our development. Rewrite sequences
of length « are represented using the tree structure of the tree ordinal @. Much
of the definitions on ordinals are lifted to rewrite sequences and we once more
come to a notion of well-formedness. The resulting representation is discussed
in relation to the traditional theory of rewriting in Section 5.2.

Throughout this section, we let R be a fixed TRS. We define the type of steps
using rewrite rules in R, parameterised by their source and target terms. Some

flexibility in the form of bisimilarity is allowed, motivated in Subsection 5.3.3.

Inductive —g : term — term — Type :=
| Step: ¥V (st : term) (o : rule) (C : context) (o : substitution),

peER—>
Clhs p)’] £ s >
Clths p)7] € t - (s =g 1).

For the translation of Definition 18 (equality of steps) to CoqQ, we assume the
lifting of bisimilarity to contexts and that substitution_eq defines agreement of
substitutions on a given list of variables.

Definition=(st:term)(m:s ->gt) (uv:term)(o: u - v): Prop :=
match z, o with

|Step-_pCo___,Step__p C o' -__=
C © C' Ap=p' Asubstitution_eq (vars (lhs p)) o o’
end.
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We describe a way to define rewrite sequences as an inductive type. A rewrite
sequence of length o can be represented by the tree ordinal @ where we label
every occurrence of the * constructor with a rewrite step. To ensure that succes-
sive steps have the same target and source terms, respectively, we include the

source and target terms of the rewrite sequence in its type and label accordingly.

At this point, it is not immediately clear what the type of the limit constructor
should be. Following the tree ordinals, we think of a rewrite sequence as a
countably branching tree with every branching node representing the least upper
bound of its branches. As a first step towards a type of rewrite sequences, we
write down an incomplete try. Note that the Cons constructor appends (not

prepends) a step to a sequence.

Inductive —¢ : term — term — Type :=
INil : Vi, t—»gt
|Cons: ¥ stu, (s —»gt)—> ({ogu)— (s —>gu)
[Lim:Vst,(nat > s —»g?) > (s »g ).

This is not yet satisfying, because we cannot fix a value for ?. We complete the
type for Lim as follows. First, we parameterise it with the target terms of the
branches. Second, we add the condition that these terms must converge to the
target term .

|Lim: Vst (ts: nat — term),
(¥ n, s —g ts n) — converges ts t — (s —»g 1)

Of course, the branches of a Lim constructor may still not actually approximate
to arewrite sequence (of length a limit ordinal). The intuition is that each branch
should extend on its preceding ones. This would correspond to the wf property
we defined on ord, where we lift < to a strict prefix relation on —»%. We return to
this issue in Subsection 3.3.2, but first consider the definition of an embedding

relation on —»g.

3.3.1  Embeddings of Rewrite Sequences

We lift the notions of predecessor and predecessor indices to the domain of
transfinite rewrite sequences. The set of predecessor indices is easily defined

as pred_type.
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Fixpoint pred_type st (¢ : s —»g ) : Type :=
match ¢ with
| Nil - = empty
| Cons _ _ _ ¢ _ = unit + pred_type ¢
|[Lim___f _= {n:nat& pred_type (f n) }
end.

The predecessor indices defined by pred_type point to a specific occurrence
of the Cons constructor in a rewrite sequence. This constructor does not only
contain a rewrite sequence (analogous to an ordinal in the ord case), but also a
rewrite step. The pred function gives us both the rewrite sequence and the step
pointed to by a predecessor index. For the type checker to accept the definition,
we use a X-type that contains this pair, parameterised by the source and target
terms of the rewrite step.

Fixpoint pred st (¢ : s —g 1) (¢ : pred_type ¢) :
{ ts : term X term & (s —»g fst 1s5) X (fst ts = snd 15) } :=

match ¢ with

| Nil — = (empty_rect _) ¢

| Cons _uty m = match:with
|inltt = existT - (u, 1) (¥, 7)
|inr k = pred ¢ «
end

|[Lim__ _f _=match:with
| existT n k = pred (f n) k
end

end.

In an effort to prevent getting lost in a syntactical labyrinth, we define the fol-

lowing notational shortcuts:

SHORT  EXPLANATION DEFINITION

ole] location in ¢ indexed by ¢ pred ¢ ¢

@[] rewrite sequence in ¢ indexed by ¢ fst (projT2 (pred ¢ 1))
o[’ step of ¢ indexed by ¢ snd (projT2 (pred ¢ ¢))
o[]" source term of ¢[¢]*"™" fst (projT1 (pred ¢ ¢))
o[]® target term of ¢[¢]™ snd (projT1 (pred ¢ 1))

As an example of predecessor indexing, consider the graphical representation of
arewrite sequence ¢ of length w+2 and its predecessor index ¢ = inr (inr (4, inl})

in Figure 3.1. The initial part of length w is represented by a series of finite
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FiGURE 3.1. Example of a rewrite sequence and predecessor index.

rewrite sequences, each one extending on the previous one by one step. The
sequence of terms {t,%,13,...} converges to the term f,. Here, ¢[(]%*? is a

rewrite sequence from #; to #3 and ¢[¢]°™ is a step from #3 to #4.

Having a closer look at the order < on the tree ordinals, we can see that it really
defines embeddings of their tree structures. This is due to clause 1 of Defini-
tion 4. In this clause, two occurrences of the * constructor (one in both ordinals)
are cancelled out against each other, but the positions of these occurrences in
their respective ordinals do not necessarily correspond. Since occurrences of *

carry no additional information, this has no effect on the resulting relation.

What this means for a translation of < to the domain of our inductively defined
rewrite sequences is that, indeed, we get an embedding relation. We only have
to make sure that in the Cons case, we cancel out two equal steps against each
other. We say that ¢ is embedded in ¢ (written ¢ C ) if ¥ can be obtained
from ¢ by inserting any number of steps in ¢. We distinguish between inserting
a step (i) before the first step, (ii) after the last step, and (iii) in between steps in
arewrite sequence. Note that any steps inserted consecutively in between steps
necessarily form a cycle, because of the typing constraints in the definition of

rewrite sequence.
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InductiveE:Vstuv, (s »gt) > (u—»gv)— Prop:=
[Cni s Y suv @ u—»gv),
Nil s C ¢
| Ccons : Vstuv @ :u—»gv)(u:pred_type ) (¢ : s —g ¥[L]")
(Y- »w 1),
PEYLP™ —
T 'J/[L]STP N
ConsgpnCy
|Clim: Vstuv(ts:nat—term) (f: Vn,s »gitsn)
(c: convergestst) (Y : u —»g V),

(Vn,fnEy)—
Limf cCy.

Analogous to the strict order < on ordinals, we define a strict embedding relation

[ on rewrite sequences.
DefinitionCstuv(p:s—»gt, ¥y :u—-»gv):=31, ¢ C Y[

Note that, while non-strictly embedded rewrite sequences may differ in any of
the three ways defined above, strictly embedded rewrite sequences always differ
in their last step. Thus, if ¢ is strictly embedded in ¢ then ¢ can be obtained
from ¢ by inserting any number of steps in ¢, but at least one after the last step.

3.3.2 Well-formed Rewrite Sequences

The wf property on ord is defined in Section 3.1 to rule out a certain class of
ordinal representations. This issue translates directly to our inductive repre-
sentation of rewrite sequences. We define a well-formedness property wf on

rewrite sequences, using the strict embedding relation .

Fixpoint wf st (¢p:s —»gt): Prop:=
match ¢ with
| Nil _ = True
|[Cons_ _ ¢y _ _=>wlfy
[ILm__f__=>{Vnwf{fn)AYnmn<m—->fnCfm
end.

On page 23, we define the Lim constructor with the intuition that each of its
branches should extend on the preceding ones. Naturally, we would implement
this condition using a strict prefix relation on rewrite sequences, but the strict

embedding relation [ is also satisfying for this purpose.
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Consider an instance of Lim, satisfying wf, with branches f. For every n < m,
we have f n  f m. Thus there is a predecessor sequence of f m that can be
obtained from f n by inserting any number of steps in f n. Steps inserted before
the last step of f n must form a cycle (note that all branches start at the same
term). Therefore, f m can be obtained from f n by adding one or more steps at
the end of f n and possibly inserting cycles at other positions of f n. This shows
that, ignoring cycles, T actually defines a strict prefix relation on the branches

of f.

There is still an important omission in our formalisation though: even rewrite
sequences satisfying wf are not necessarily convergent. How the convergence
conditions from Definition 21 relate to our formalisation is discussed in Sec-
tion 5.2.

3.3.3 Combining Rewrite Sequences

With the Cons constructor, we can extend a rewrite sequence with one step at
the end. Dually, snoc extends a rewrite sequence with one step at the start. It is

the analogue of 1 + « on ordinals.

snoc is recursive in its right argument, but for the Coq type checker to accept our
definition, we must write it such that it consumes this argument first.! Hence,

we use an auxiliary function snoc_rec.

Fixpoint snoc_recstu(p:t—»gu): (s ogt) = (s »gu) =
match ¢ with
| Nil - = fun 7 = Cons (Nil s) 7
| Cons _ _ ¢ _ 0= funn = Cons (snoc_rec ¥ ) 0
|Lim_ _ fuc= funnr = Lim (fun o = snoc_rec (f 0) 1) ¢
end.

Definitionsnocstu(m:s—-gt)(p:t—>gu):Ss—»gU:=SNOC_TEC @ T.

A related operation is concatenation of rewrite sequences, the analogue of ad-

dition on ordinals. It is defined in the same way as snoc.

I'The reason for this is rather technical, but the idea is that the return type nicely follows the case
analysis on the rewrite sequence in the match construction. We also give some hints to the CoQ
type checker that are not shown here.
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Fixpoint concat_rec st u (i : t »g u): (s »gt) = (§ »g u) :=
match ¢ with
INil - = funp = ¢
| Cons _ _ ¢ _ = fun ¢ = Cons (concat_rec ¢ p) ©
|Lim - _ f u ¢ = fun ¢ = Lim (fun 0 = concat_rec (f 0) p) ¢
end.

Definitionconcatstu(p:s—»gt) (W :t—»gu):s—»gu:=
concat_rec ¥ .

Well-formedness is preserved under concatenation.

Lemma concat-wf : Vstu(p:s—»gt)W:t—»gu),
wf ¢ = wf ¥ — wf (concat ¢ ¥).

3.4 Properties of Terms and TRSs

We define some predicates on terms and TRSs. Again, we let R be a fixed TRS
throughout this section.

We work with a somewhat relaxed definition of critical pairs. First, we do not
require the common instance to be a most general one. Second, the substitution
o might not be minimal and might not introduce only fresh variables (cf. Def-
inition 23). The effect of this relaxation is that for every critical pair, we have
a series of critical pairs by this CoqQ definition. This is precise enough for our
present purposes, however, since it has no effect on questions such as are there

critical pairs? or are all critical pairs trivial?.

Definition critical_pair (R : trs) (f; f, : term) : Prop :=
dp; :rule, A p; : rule, A p : position, Ao, A 1,

PLERA P2 €RA (o1 =p2— p#nil) A

match subterm (lhs py) p, dig (Ihs p;)” p with

| Some s, Some C = is_var s =false A s” € (lhs p2)" A
) € Cl(ths pp)" 1At € (ths p1)T

| -, - = False

end.

Now we can in a straightforward manner define the properties of orthogonality

and weak orthogonality.

Definition orthogonal (R : trs) : Prop :=
trs_left_linear R A V t; t,, — critical _pair #; 1,.
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Definition weakly_orthogonal (R : trs) : Prop :=
trs_left_linear R A V #| 15, critical_pair t; t, = 1} € 1.

Next we define when a term is a normal form and when we have unique normal

forms.
Definition normal_form ¢ : Prop :=
=3 C:context, A p: rule, A o : substitution, p € R A C[(lhs r)7] & 1.

Definition unique_normal_forms : Prop :=
Vstu(p:s—»gt)W:s—-gu),
wf ¢ = wf ¥ — normal_form ¢ — normal_formu — ¢t € u.

Note that the unique_normal _forms definition is only a translation of the UN ™
property, not of the more general UN® property (see also Definition 22).
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CHAPTER 4

Unique Normal Forms in

Weakly Orthogonal Systems

Finitary orthogonal term rewriting systems have unique normal forms. In fact,
weak orthogonality is enough to establish this property for finitary systems
(Terese, 2003, Chapter 4). To what extent can these results be lifted to infinitary
rewriting?

In the infinitary setting, orthogonal TRSs exhibit the infinitary unique normal
forms (UN®) property (Kennaway et al., 1995; Klop and de Vrijer, 2005). We
might expect this property to generalise to weakly orthogonal systems. After
all, the motivation for allowing trivial critical pairs in these systems is that,
intuitively, they are witnesses of harmless overlap. However, this intuition turns

out to be unjust for the infinitary case.

4.1 A Counterexample

We describe a simple counterexample showing that weak orthogonality does
not imply the UN® property (Endrullis et al., 2010).

We work in a signature with unary function symbols D and U.! In the notation

'We can think of D and U as ‘down’ and ‘up’. The original formulation of this TRS uses P and S
(‘predecessor’” and ‘successor’), but to avoid notational conflicts with the S constructor for nat in
Coq, we proceed with this modification.
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of terms, we omit the brackets around arguments and assume right-associativity
of function symbol application, e.g. writing DUx for D(U(x)). A notation for
finite repetitions of a function symbol f terminated by a term ¢ is defined by
(i) f% = t and (ii) f™*' = ff"t. The infinite nesting fff ... of f is written f*.

Consider the TRS consisting of the two left-linear rewrite rules p; and p;:
p1 : DUx — x 2 UDx — x

This system has two critical pairs (Dx, Dx) and (Ux, Ux), both of which are
trivial, establishing weak orthogonality. The infinite term v = D'U?D3U* . ..
has two normal forms. It rewrites to U® in w many p;-steps and to D* in w

many p;-steps. This contradicts UN™ and therefore also UN™.

Other interesting properties of this TRS (e.g. weak normalisation is not pre-
served under rewriting) and a translation to the infinitary A8n-calculus are dis-
cussed by Endrullis et al. (2010).

4.1.1  Rewriting v to U¥

We show briefly what rewriting v to U“ amounts to. Rewriting v to D is done
in a similar way. An obvious way to define v by corecursion is via auxiliary
terms v;, parameterised by 7 as follows:
v = v, =U"D"",,
But a more useful definition for our present purposes, and the one we stick with,
is the slight reformulation:
— 1 _ n2n+lyr2n+2) s
v =1 v, =D UYL
For any term # and natural numbers 7, m we have Urpriymly —,, U'D"U™t

and thus U"D™ U™t — U"t by iterating m such steps. Instantiating m with 2n+1
and 7 with Uv/

: n,,/ n+l, s :
' 1> We obtain U"v;, — U""'v/ , for any n. Concatenating these

sequences, iterating n from 0 onwards, we arrive at v — U“.
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4.2 The Counterexample in Coq

We implement the counterexample from Section 4.1 using the Coq development
described in Chapter 3.

The rewrite rules p; and p, are straightforwardly defined and shown to be left-
linear. By a simple proof we obtain that all critical pairs are trivial and hence
that the TRS is weakly orthogonal.

Lemma wog : weakly_orthogonal R.

We introduce the notation f @ ¢ to mean Fun f (vcons ¢ (vnil term)). For
brevity, in the following discussion we focus on the function symbol U and
omit analoguous definitions using the function symbol D. The infinite term
U? is defined by corecursion and finite repetitions U”t are defined by recursion

(and are assumed to generalise to contexts with the same notation).

CoFixpoint U¥: term:=U @ U“.
Fixpoint U" ¢ :=

match n with

|O=1t

|ISn=U@ (U"r)

end.

Unfortunately, v is not as easily defined. Although clearly productive, direct
translations of the corecursive definitions in Subsection 4.1.1 do not satisfy
CoqQ’s guardedness condition (see also Section A.4). The conclusion of a trial
and error approach is that we must use anonymous cofix constructions. The

definition we proceed with is the following:

CoFixpoint v/ n: term :=
(cofix Ds (d : nat) :=

match d with

| O =D @ (cofix Us (u : nat) :=
match u with
|O=>v' (Sn)
|[ISu=U@U @ (Us u)
end) (S n)

|Sd=D @D @ (Ds d)

end) n.

Definitionwv:=v"0.
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We now prove that U and D® are (distinct) normal forms. This is a tedious
proof that essentially consists of analysing the occurrence of a redex in these
terms, yielding that there can not be such an occurrence.

Lemma nfye : normal_form (system := R) U“.
Lemma nfpe : normal_form (system := R) D“.

Lemma neqg, : = U“ < D©.

Constructing a rewrite sequence from v to U is done in much the same way
as described in Subsection 4.1.1. First, we define the parameterised step that is
used in the rewrite sequence. It eliminates one pair of D, U constructors in a
term of the form U" D™+ U™*'t. The omitted argument of the Step constructor
(denoted by _) is a proof of p; € R. Note that x is the variable that is used in

both rewrite rules.

Definitiono ¢t (y: X):term:=
match beq_var y x with
| true =t
| false = Var y
end.
Lemma fact®"™® : ¥ (n m : nat) (¢ : term),
(U" D" O)[substitute (o~ (U™ 1)) (lhs p;)] € U™ DS US™ ¢,
Lemma facty® : V (n m : nat) (¢ : term),
(U" D™ O)[substitute (o (U™ 1)) (ths p1)] & U D" U t.
Definitionmnmt: U"DS" US" t g U" D" U™ ¢ :=
Step p; (U D" 0O) (o (U™ 1)) — (facti®"® n m 1) (facty = n m 1).
Generalising these rewrite steps 7, we construct the rewrite sequences ¢,. In
their recursive definition, the snoc function is used to prepend (7 n m 1) to (¢,
n m t). Doing some arithmetic, we obtain that these rewrite sequences can be
used to define rewrite sequences ¢, of a more useful type.
Fixpointg,nmt: U'D" Ut »g U"t:=
match m with
| O = Nil (U" 1)

|Sm=snoc(mnmt)(p,nmt)
end.

Definition ¢, n: U" (V' n) =g US" (v (S n)) :=
wan(S(2xn) (U @V (Sn)).

We concatenate all rewrite sequences ¢, to construct rewrite sequences from v
to a term that is equal to U up to any given depth.
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Fixpoint . n: v —g U" (v n) =
match n with

10 = Nil v
| S n = concat (¢ n) (¢ n)
end.

The definition of the final rewrite sequence ¢ is done by combining ¢, with a

proof that the target terms converge to U®.
Lemma conv,, : converges (funn = U”" (v' n)) U“.
Definition¢: v —g U := Lim ¢. conv,, .
Lemma wf, : wf ¢.

We can prove v — D“ in a similar way and conclude by proving our main

theorem.

Lemma no_ung : — unique_normal_forms R.

Theoremno_un_-wo: =V F X R,
weakly _orthogonal (F := F) (X := X) R — unique_normal _forms R.
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CHAPTER 5

Discussion

In Chapter 3 we present our formalisation of infinitary term rewriting and in
the current chapter we discuss some aspects of it. First, the representation we
use for rewrite sequences is motivated and the resulting definitions are related
to the notion of convergence. We then comment on some technicalities in the

implementation. Finally, we conclude with an evaluation of our formalisation.

5.1 Representing Rewrite Sequences

In Definition 19, transfinite rewrite sequences are introduced as partial func-
tions from ordinals to rewrite steps, with the appropriate conditions on source
and target terms of subsequent rewrite steps. Could we not translate this directly
to CoQ?

A problem with partial functions from ordinals to rewrite steps is that we would
need a decidable order on the ordinals. Consider a non-trivial rewrite sequence
of length . The partial function representing this rewrite sequence must com-
pare its input value (an ordinal) to all possible input values (ordinals up to @) in

order to decide what rewrite step to produce, in finite time.

The order on our tree ordinals is not decidable (consider comparing the upper
bounds of two infinite sequences). This could be remedied by using a different

representation for the ordinals, for example axiomatically, as Cantor normal



forms, or as sets. We feel that the inductively defined tree ordinals are a more

natural representation in the constructive type theory of Coq.

Comparison of ordinals up to some given upper bound may be decidable, so
another remedy for this problem would be to only consider rewrite sequences
of limited length. Motivated by the Compression Lemma, we could go even
further and restrict our representation to rewrite sequences of length < w. This
would severely cripple our formalisation, since much of the theory of infinitary
rewriting could not be developed with this representation (e.g. the Compression

Lemma itself).

Another argument in favour of our representation based on tree ordinals is that
it seems natural for a Coq formalisation. As a comparison, lists of finite length
are usually defined by induction in Coq, not as partial functions from the natu-
ral numbers. Our representation can be seen as a generalisation of inductively

defined finite lists to lists of transfinite length.

5.2 Convergence of Rewrite Sequences

The inductively defined rewrite sequences from Section 3.3 are not necessarily
(weakly) convergent. A rewrite sequence of limit length satisfies the condi-
tion that the target terms of the Lim branches converge but this is too weak to

establish convergence of the rewrite sequence itself.

The depths of the rewrite steps are not considered at all in our formalisation and
therefore it obviously does not implement strong convergence. Furthermore, the
discussion in this section also applies to the notions of continuity.

We consider an example of a rewrite sequence that satisfies our inductive def-
inition from Section 3.3 but is not weakly convergent. Let A be a constant and

B, C, D unary function symbols. We use the following three rewrite rules:
p1 ¢ A— B(A) P2 C(x) = D(x) p3 @ D(x) - C(x)
The term C(A) rewrites in w many p;-steps to C(B“).
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P1 P1

S
>——0

B —m— 0
C—m—m—wm— 0

We modify this rewrite sequence such that in between every two p;-steps, the
root symbol C is changed to D and back to C. The resulting rewrite sequence

does not have a limit and is not weakly convergent.

T ~p

C

‘ p2 —p3 ~p1 —p2 —p3 ~p1
A B
A

D C C D C
O
A
Ao s

We can define this rewrite sequence as the limit of (¢,),en, Where + denotes

concatenation of rewrite sequences:

@0 : C(A) -° C(A)
Gui1 ¢ @ H C(B"(A)) —,, C(B"'(A)) —,, D(B"'(A)) —,, C(B""'(A))

The target terms C(B"*'(A)) converge to C(B“) and this construction can thus
be used with our inductive definition of rewrite sequences, where we take ¢, to

be the n'" branch of the Lim constructor.

It is not clear to us whether there is some natural translation of the convergence
conditions to our formalisation. For completeness we include a (not so natural)
translation of convergence, but we were not able to use it in our development.
Even proving the simplest convergent rewrite sequences to satisfy these defini-

tions seems too involved.

Fixpoint weakly_convergent st (¢ : s —g ) : Prop :=
match ¢ with
| Nil - = True
| Cons - _ ¢ _ _ = weakly_convergent ¢
|Lim - _ ft - = (V¥ n, weakly _convergent (f n)) AV d, 3¢,V «,
LI E [k — plk]" =<at
end.
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Fixpoint strongly_convergent s f (¢ : s g t) : Prop :=
match ¢ with
| Nil _ = True
| Cons _ _ ¢ _ _ = strongly_convergent ¢
|Lim - _ft - = (¥ n, strongly_convergent (f n)) A
Yd,3,V«k,
@[]’ E ¢[«]*? — d < depth ¢[«]*™
end.

5.3 Design Decisions

We describe a number of design decisions that we had to make during imple-

mentation.

5.3.1 Coinductive Terms

We define the type of infinite terms by coinduction. Another often used defini-
tion of Tery is by partial functions from positions to symbols. This definition
is troublesome to translate to CoqQ, which admits no partial functions. It might
be possible to circumvent this restriction using option types, or by some other
means, but we suspect that the resulting notion of terms would not be elegant.
Coinduction is a native concept in CoqQ and we use it as such. The consequence
is that, in defining infinite terms, we are restricted to definitions in guarded

form, see Section A.4.

5.3.2 Positions

The set of positions of a given term is a restricted list of natural numbers. This
could probably be translated to CoqQ by encoding the restriction in the type of
positions. It would result in quite complicated definitions, however, and there-
fore we choose for subterm and dig to take any list of natural numbers and
return option types to distinguish between existing and non-existing positions.
This comes at the cost of having to handle the option types with every call of

subterm or dig.
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5.3.3 Bisimilarity in Rewrite Steps

In the definition of rewrite steps (Section 3.3), we include bisimilarity condi-
tions on the source and target terms. The reason is that we cannot rely on CoQ’s
small standard equality. For consider two rewrite steps s; — s and #; — 1,
where s, € t;. We should be able to construct the rewrite sequence consisting
of these two steps, but the fact that the target term of the first and the source
term of the second can be identified must be encoded somewhere. There are
two places to do this: in the Cons constructor for rewrite sequences, or in the
definition of rewrite steps. We choose the latter because it turns out to be tech-
nically more elegant.

5.3.4 One-Hole Contexts

We know of two obvious ways to represent multi-hole contexts: by the coin-
ductive term datatype augmented with a constructor for holes or by a function
whose arguments represent holes. Both are unsatisfactory. The first represen-
tation requires a dynamic check on the number of holes and it admits contexts
with infinitely many holes. The second representation cannot guarantee that
each hole occurs exactly once and its type, encoding the number of holes, can-
not be generalised. Lindley (2008) presents a quite involved solution based on
a type-level difference encoding of natural numbers. We bypass the problem by

only considering one-hole contexts.

5.4 Conclusions

Our representation of transfinite rewrite sequences based on tree ordinals is
original work. While the representation is natural to implement in Coq, we
are disappointed by not being able to come up with a natural translation of
convergence for this representation. Without such a translation, we feel our

definitions are not satisfactory and we hope that future work can remedy this.

In an alternative representation as partial functions from ordinals to rewrite
steps, convergence can be expresssed directly, but it has other problems. How-
ever, it seems worthwhile to also investigate this representation further, for ex-

ample using the ordinals in Cantor normal form by Castéran (2006). Jeroen
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Ketema showed by personal communication that, assuming some decidable
properties on the ordinal representation, constructive formalisation of some of
the infinitary rewriting theory is possible.

Working with Coq has been an overall pleasant experience. During this devel-
opment, our main disturbance was with the guardedness condition on corecur-
sive definitions. Sometimes unguarded but natural definitions are easily seen to
be productive yet not accepted by Coq. One could hope for future additions to
Coq in this area, for example in the form of user-supplied productivity proofs

for corecursive definitions to be admitted.

Still, the amount of work that is required for a formalisation like this is dispro-
portionally large. Especially the implementation of the counterexample to UN™
in weakly orthogonal systems from Chapter 4 takes only a page to formulate on

paper, while it took us some 2,000 lines of CoqQ code to formalise.

The complete formalisation consists of some 6,500 physical source lines of code
(LOC), roughly distributed as follows:

LOGICAL MODULE LOC
coinductive terms 1,250
tree ordinals 900
transfinite rewriting 1,500
UN® and weak orthogonality 2,000
total ~ 6,500
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APPENDIX A

The Coq Proof Assistant

Coq (The Coq development team, 2009) is based on the formal language Cal-
culus of Inductive Constructions (Coquand and Huet, 1988; Paulin-Mohring,
1993), which is essentially a typed A-calculus with inductive types. In this lan-
guage, logical propositions are represented as types and proofs of such proposi-
tions are A-terms, motivated by the Curry—Howard—de Bruijn correspondence
(Girard, 1989). The core of the Coq system is its type checking algorithm.

We present a very short introduction to Coq and refer to Bertot and Castéran
(2004) and Chlipala (2009) for further reading. Sections A.4 and A.3 discuss

two technicallities related to the Coq development described in Chapter 3.

A.1  Types and Propositions

Every term in Coq has a type and every type is also a term. The type of a type

is called a sort and the sorts in CoqQ are

* Prop, the sort of logical propositions,

* Set, the sort of program specifications and datatypes,
e Typey, the sort of Prop and Set, and

* Type,,, the sort of Type;.!

IThe subscripts i of the sorts Type; are invisible to the user and only used internally.



For example, nat is the datatype of the natural numbers. It lives in Set and is

defined inductively.

Inductive nat: Set :=
| O : nat
| S : nat — nat.

The logical proposition that for every natural number n, there exists a natural
number m larger than n, can be stated as a term of sort Prop.

(Vn:nat,dm: nat,n < m): Prop

Using the vocabulary of types and terms, the universal quantifier V is called
the product type constructor. A product type V¥ x : T, U is called dependent
if x occurs free in U, otherwise it is written 7 — U. The type of the con-
structor symbol S defined above, for example, is that of functions from nat to
nat and is not dependent. The non-dependent function space notation 7 — U
is also used for logical implication, justified by the Curry—Howard—de Bruijn

correspondence.

A.2 Terms and Proofs

Proofs of logical propositions can be defined in two ways. First, we can write a
proof term directly. The only requirement is that this term has as type the logical
proposition that we want to prove (again, justified by the Curry—Howard—de
Bruijn correspondence). Second, we can use factics to construct a proof term

interactively, in a way mimicking natural deduction.

As an example of the use of tactics, we prove the proposition from the previous
section. This is done by stating the proposition, after which the system enters a
goal-directed proof mode. In this mode, we are presented with a goal, consist-
ing of (i) a context of local variables that are available (ii) a proposition denoting
what remains to be proven. Tactics can now be applied to progressively trans-
form the goal into a simpler goal. When the goal is simple enough to be solved
directly by applying a tactic, we are done proving the proposition.

Lemma It_serial : YV n: nat, Am: nat, n < m.

Proof.

intron. exists(Sn). auto.
Qed.
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In this example, we use the tactic intro to introduce the variable » to the con-
text. With exists, we supply a witness for the existential quantification. At
this point, the goal is simple enough to be solved directly by the auto tactic.

Recursive functions are defined using the Fixpoint keyword. The function
must have an argument of an inductive type that is structurally decreasing with
each recursive call. Consider for example the definition of the factorial function,
which also shows how a case analysis on values of inductive types can be done

with the match keyword.

Fixpoint factorial (n : nat) : nat :=
match n with
|O=S0
| Sn = S n X (factorial n)
end.

A.3 The Positivity Condition

Coq restricts inductive definitions to those that satisfy the positivity condition.
The reason for this is that definitions that fail this (syntactic) criterion may lead
to an inconsistent system. For a precise definition of positivity, consult The

Coq Reference Manual, Section 4.5.3.

Consider again the definition of rewrite sequences from Section 3.3. A more
natural way to define the type of the Lim constructor might be by using a X-type
instead of a separate function for the target terms of the branches.

[Lim:Vst(f:nat— { ¢ :term&s—»gt’}),
converges (fun n = projT1 (f n)) t = (s »g 1)

However, this type definition does not satisfy the positivity condition and there-
fore we cannot use it. We feel that the definition from Section 3.3, which does

satisfy the condition, models our intentions adequately.

A.4 Guardedness in Corecursive Definitions

In Coq, coinductive types can be defined using the CoInductive keyword

(Giménez and Castéran, 2007). No induction principles are defined for these
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types, because they are not necessarily well-founded.! Objects in a coinductive
type may be infinite (i.e. contain an infinite amount of constructors). How-
ever, in order to guarantee productivity, definitions of such objects are required
by Coq to be in guarded form (Giménez, 1994). A corecursive definition in
guarded form satisfies two (syntactical) conditions. First, every corecursive call
must occur inside at least one constructor (of the same coinductive type). Sec-
ond, every corecursive call may only occur inside abstractions or constructors

(of the same coinductive type).?

In the term definition, we use a vector type, parameterised by the type of its
element and its size. Naturally, one would implement a vector type in CoQ

inductively, as for example has been done in the standard library.

Inductive vector (A : Type) : nat — Type :=
| Vnil : vector A O
| Vecons : A — VY n, vector A n — vector A (S n).

Now consider the following trivial example of a basic operation on terms by
corecursive traversal.
CoFixpoint id (¢ : term) : term :=
match ¢t with
| Var x = Var x
| Fun f args = Fun f (vmap id args)
end.
This definition is ill-formed, since the corecursive call to id is not guarded.> We

define a recursive type of vectors as an alternative to the inductive type.

Inductive Fin: nat — Type :=
| First : ¥ n, Fin (S n)
| Next : ¥ n, Fin n — Fin (S n).

Definition vector (A : Type) (n: nat) := Finn — A.

This makes for a definition of vmap that is just an abstraction, and therefore

solves the guardedness problem in id.

Definitionvmap A B (f : A— B) n: vector A n — vector Bn :=
funvi=f vi).

'Coq automatically derives induction principles for inductive definitions.

2To be more precise, the corecursive call is also allowed to occur inside match constructs and other
corecursive definitions.

3The call to id is hidden inside vmap, which is defined by recursion on the vector args.
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